Removing Redundancies From Data: Principle Component Analysis

COMS21202, Part III

• Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
Objectives

- Understand potential harm of high dimensionality of dataset
- Use Principle Component Analysis (PCA) to remove “redundant” dimensions from data.
High Dimensionality, Good? Bad?

- \(X = \{x_i\}_{i=1}^n, x \in R^d. \)

- Is a large \(d \) always a good thing?
 - ☺ We have more info as \(d \) grows!
 - ☹ LS does not work when \(d > n \)
 - ☹ Large \(d \) causes overfitting
 - More ☹ ?
Curse of Dimensionality (CoD)

- CoD is a generic term referring to the fact that many machine learning algorithms scale very poorly with d, in terms of performance.
 - Many geometry concepts work differently in higher dimensional space.
 - One of those concepts is “locality”.

• Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
The Vanishing Neighborhood

V_0: Neighborhood volume of x_0

$\frac{V_0}{V} = \frac{1}{k^2}$

$\lim_{d \to \infty} \frac{V_0}{V} = \frac{1}{k^d} = 0$

- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
The Vanishing Neighborhood

- The neighborhood cube quickly vanishes as d increases.
- As a result, your k-nearest neighbors are no longer in the neighborhood V_0.
- These neighbors are no longer good at predicting the label of x_0.
Reduce the Dimensionality using Feature Transform

- We want to find a feature transform $f(x) \in \mathbb{R}^m$, where $m \ll d$.
 - f transforms original input x to a subspace as $\mathbb{R}^m \subset \mathbb{R}^d$.
- We assume our dataset is centered:
 - $\frac{1}{n} \sum_{i=1}^{n} x_i = 0$
- If dataset X' is not centered:
 - Centering: $\forall i \ x_i = x'_i - \frac{1}{n} \sum_{i=1}^{n} x'_i$

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
Reduce the Dimensionality using Feature Transform

- What is the optimal strategy of selecting $f(x)$?
- Want to reduce dimension using f.
 - while preserving as much info as possible!
- Let’s look at this problem from data compression perspective!

- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
Encoder and Decoder

\[\begin{align*}
 &x \in \mathbb{R}^d \quad f(x) \quad \text{Encoding} \\
 &z \in \mathbb{R}^m \quad f'(z) \quad \text{Decoding} \\
 &x' \in \mathbb{R}^d
\end{align*} \]

Loss of Info: \(\| x_i - x'_i \|^2 \)

- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
Codec

Original recording → Encoding → Spotify → Decoding → Music you hear

• Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
Linear Codec

- Suppose $f(x) = Bx^\top$, $B \in \mathbb{R}^{m \times d}$.
- Suppose $f'(z) = B'z^\top$, $B' \in \mathbb{R}^{d \times m}$.
- We can learn a codec by

$\min_{B,B'} \sum_{i=1}^{n} \left\| x_i^\top - B'Bx_i^\top \right\|^2$

- However, there are so many possible candidates B and B'!
- Solving above problem is hard.

• Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
Linear Codec

- We need to put **constraints** on the B and B' to make our problem easier.
- One possible constraint is:
 - $B' = B^\top$
 - $BB' = BB^\top = I$
- Such a codec actually defines an orthogonal projection of X.
 - Show $B'B$ is an orth. projection matrix

- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
Orthogonal Projection

\[x_i' = B^\top B x_i^\top \]

\[z_i = f(x_i) = B x_i^\top \]

is called an embedding of \(x_i \),

\(B \) is called embedding matrix.

- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
A Pizza Topping Analogy of Embedding

- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
Minimizing Projection Error

\[\min_{B, BB^\top = I} \sum_{i=1}^{n} \left\| x_i^\top - B^\top B x_i^\top \right\|^2 \]

We minimize square error between original data points and its projection.

The above problem is equivalent to:

\[\max_{B, BB^\top = I} \text{tr}(BX^\top XB^\top) \]

Live demonstration

• Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
Minimizing Projection Error

\[\max_{B, BB^\top = I} \text{tr}(BX^\top XB^\top) \]

Remarkably, this seemingly complex optimization has an analytical solution:

Let \([(\lambda_1, v_1), \ldots, (\lambda_m, v_m)]\) be sorted eigenvalue and eigenvector of \(X^\top X\).

\(\lambda_1 \geq \lambda_2 \ldots \geq \lambda_m\)

\(\hat{B} = [v_1, v_2, \ldots, v_m]^\top\) is an optimal solution, suppose \(v_i\) is a column vector.

Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
Principle Component Analysis

- As X is a centered dataset, $X^T X = n \cdot \text{cov}[x]$ (PC: show it!)

- Computing \hat{B} via computing sorted eigenvectors of $\text{cov}[x]$ is called Principle Component Analysis (PCA).

- Finally, embedding $\hat{f}(x_i) = \hat{B} x_i^T \in R^m$ is called PCA embedding of x_i. m dimensional “compression” we want!

- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
Refresh: Eigenvectors and Eigenvalues

- Given a square $n \times n$ matrix A, if there exists non-zero vector \mathbf{v} such that $A\mathbf{v} = \lambda \mathbf{v}$, $\mathbf{v} \in \mathbb{R}^n$

- Then λ is an eigenvalue and \mathbf{v} is an eigenvector of A.

• Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
Example, One Cluster

v_1 always points at the direction where your dataset has the largest variance!

PC: Intuitively explain why.

• Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
Example, Embedding $z = \nu_1^T x^T$
Example, Two Clusters

However, PCA embedding does not necessarily preserve clustering information.

• Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
Example, Embedding $z = \mathbf{v}_1^\top \mathbf{x}^\top$

Cluster information **lost** after embedding!
Will address this issue in the next lecture.

- Song Liu (song.liu@bristol.ac.uk), Lecturer in Data Science and A.I.
Conclusion

- Curse of Dimensionality
 - d increases, performance may decrease.

- Principle Component Analysis
 - Finding an embedding matrix \hat{B} by computing sorted eigenvalue/vectors of $\text{cov}[x]$.
 - $f(x_i) = \hat{B}x^\top$.