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Abstract

In this document, we highlight several exciting research opportunities on statistical
discrepancies within the context of machine learning and data science. Note that this
document is a public facing research profile thus I encourage interested students to talk
to me directly for more specific research ideas and projects.

1 Background

Machine Learning is about identifying patterns from data [1]. Statistical discrepancies mea-
sure differences between two probability distributions and play essential roles in searching
for patterns.

For example, when classifying images of cats and dogs, we want to find imaging patterns
separating dogs and cats. Thus, an ideal searching criterion is looking for features that
maximizes a particular statistical discrepancy between cats and dogs images.

When generating artificial images, we want synthesized images to have patterns similar to
real ones. To do so, we can “train” a neural network by minimizing a statistical discrepancy
between the synthesized and original images.

When detecting cyberattacks, we can identify data points that contribute the most to the
discrepancy between a contaminated and a reference data set. There are many other machine
learning applications whose learning criteria depend on measuring statistical discrepancies
between distributions.

As a result, the study of statistical discrepancy is one of the most fundamental problems
in statistics and has attracted much attention in our community for a long time. It was
thought that many classic discrepancy measures (such as Kullback-Leibler divergence) are
not tractable for large datasets and complicated models. However, the research on computing
discrepancy has made massive progress in recent years, enabling many exciting applications
and providing plentiful research opportunities.

2 Research Opportunities

I am interested in supervising research projects along the following lines.
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• Machine Learning Applications for Discrepancy Measures Many discrepancies
become computationally tractable due to approximation algorithms discovered very
recently. Their potential has not been fully realized yet and new applications are being
identified now and then. Approximate Bayesian Inference by minimizing f -divergence
[5] and Kullback-Leibler variational gradient descent [11] are examples of research
along this line. Both are applications of recently discovered computational methods
[13, 4, 10]. Moreover, in some domains of statistics, the problems are often solved by
non-probabilistic approaches. Statistical discrepancies usually provide a more general
and principled framework to tackle these problems.

• Approximating Discrepancy Measures from Data: Proposing novel algorithms
for useful discrepancy measures will significantly contribute to the foundation of ma-
chine learning. Many modern machine learning tasks, such as Generative Adversarial
Net (GAN) [6] and Variational Inference (VI) [2], rely heavily on approximating cer-
tain statistical divergences. However, we still do not have efficient approximation
algorithms for some popular discrepancies (such as Wasserstein distance) and some
existing approximation algorithms suffer from stability issues [14]. Theoretical works
can also provide insights and unify existing approximating algorithms.

• New Types of Discrepancy Measure Some machine learning applications call
for specialized differences different from any known family of discrepancies. Fisher-
Hyvarian Divergence [8, 12] and Kernalized Stein Discrepancy [10, 4] are great examples
of this line of research. They were motivated by calculating the difference between
an unnormalized density model and a dataset. Other discrepancy measures have been
motivated by the need for robustness [17] and computational efficiencies recently [9, 15].

• By-products of Approximating Discrepancy While a discrepancy is only a single
numeric measure of differences, the by-product of approximating a discrepancy can
paint a much richer picture of two distributions. For example, the density ratio function
in f -divergence estimation [13, 16] and witness function in Kernel Mean Discrepancy
[7] are useful functionals in many applications in their own rights.

• Identifying Limits and Challenges of Approximating Discrepancy Discrepancy-
based machine learning algorithms enjoy success in many applications, but it is also
important to realize the limits of such methods and propose potential fixes. For ex-
ample, it has been recognized that approximating information divergences suffers from
a “density chasm” problem [14]: the density ratio function, on which the divergence
is based, cannot be accurately estimated when two distributions are far away. Poten-
tial fixes have been proposed by constructing a “bridge” between two datasets [14, 3].
Research along this line will provide insights into developing more robust and versa-
tile discrepancy measures for a much more comprehensive range of machine learning
applications.
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3 Supervision

Although I am interested in supervising PhD students working on above topics, I am also
open to co-supervise students working on topics that are partially related to the concepts
above. Students who are interested in co-supervision are advised to reach out to me early in
their PhD study.

4 PhD Thesis

Students are free to work on any of the research opportunities above as long as their works
can be coherently combined in one PhD thesis. Below are “example” thesis titles:

• Generating Realistic Images via Statistical Discrepancy Minimization (application based)

• Robust KL Divergence Estimation via Density Ratio Estimation (methodology based)

• On the Convergence Rate of f -divergence Approximation (theory based)

Students who want to study a specialized application (such as geological science) are
advised to reach out early in order to find an appropriate co-supervisor.
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